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1. Summary 

This project focuses on innovative technologies for information processing based on quantum 

Physics. The project’s operational objective is to enhance simulation of quantum circuits 

containing many, but not all stabilizer gates. Such circuits result when enriching arbitrary quantum 

circuits with quantum error-correction codes. The project’s technical objective is the design of 

algorithms that extend techniques by Aaronson & Gottesman [1] for stabilizer gates, based on the 

Heisenberg representation of quantum computers. This is accomplished by decomposing each 

quantum non-stabilizer gate into a linear combination of stabilizer gates, simulating each resulting 

stabilizer gate in a separate thread, and reassembling the threads. The threads can be implemented 

using parallel or using sequential computation. The key issue in our research is handling the 

exponential increase in the number of threads, through data reuse. 

 

The project’s main accomplishments include the following:  

1. A general simulation framework that maintains orthogonal superpositions of stabilizer 

states and supports both unitary gates and measurements. 

2. A technique to apply unitary non-stabilizer gates by decomposing them into linear 

combinations of unitary stabilizer gates. 

3. Techniques to compress superpositions of stabilizer states, using the inner-product 

operation.  

4. A series of results describing the geometry of stabilizer states, including pairs of 

orthogonal stabilizer states and nearest neighbors, as well states that are far from any 

stabilizer states. 

5. A software architecture for compiling quantum programs into quantum circuits that can be 

simulated by a stand-alone software tool. 
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2. Introduction 

The work reported includes algorithmic techniques and methodologies to simulate quantum 

ciruicts with improved efficiency. Its key objective is to develop and evaluate new principles, 

algorithms and software for high-performance simulation of quantum circuits – a widely accepted 

computational model for quantum computation and communication 

Technology background The construction of computer algorithms and software models that 

simulate physical systems plays a fundamental role in all branches of science and engineering, and 

plays a special role in attempts to achieve competitive advantage over non-quantum techniques.  In 

particular, it was observed in the 1980s that the important task of simulating quantum-mechanical 

processes on a standard computer requires an extraordinary amount of computer memory and 

runtime. Such observations gave rise to the notion of quantum computing, where quantum 

mechanics itself is used to simulate naturally-occurring quantum properties and phenomena. The 

key insight is to replace the familiar 0 and 1 bits of conventional computing with information units 

called qubits (quantum bits) that capture quantum states of elementary particles or atomic nuclei. 

By operating on qubits, a quantum computer can, in principle, process exponentially more data 

than a classical computer in a similar number of steps. Existing quantum algorithms exponentially 

outperform best known techniques for key tasks in code-breaking. In addition to quantum 

computation, quantum communication exhibits unique properties, such as automatic detection of 

attempts to eavesdrop. High-speed quantum communication systems have been built in the early 

and mid 2000s by National Institute of Standards and Technology, several DARPA contractors 

(notably, BBN Technologies) and start-ups in the US and Europe. Some of these systems are 

currently available commercially, and others are operated 24x7 for research purposes and as 

testbeds for network protocol development. The most serious fundamental obstacle to the practical 

quantum information processing known today is the inherent instability of qubits. This obstacle is 

traditionally addressed by quantum error-correction techniques, which are generally available but 

require significant overhead and require adaptation to individual quantum circuits. In order to 

scale quantum information processing, including computation and communication, to large and 

complex systems, quantum device operation is compactly captured by the abstract formalism of 

quantum circuits. These circuits consist of interconnected quantum gates that act on qubits.  They 

can be composed in a hierarchical manner, using design techniques similar to those used in digital 
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logic design. However, as quantum circuits offer a much broader range of information-processing 

possibilities, their design and evaluation entail a dramatic increase of complexity, requiring new 

levels of sophistication in design algorithms and tools.  A particularly important class of design 

tools performs simulation of quantum circuits on conventional workstations, i.e., these tools 

produce representative outputs of ideal quantum circuits on particular inputs, but without requiring 

quantum hardware. 

Quantum simulation tools typically consist of a front-end and a back-end. The front-end facilitates 

the development of quantum software and the back-end acts as a temporary replacement of 

(hardware) quantum processing units to run such software. Once quantum hardware is available, it 

can be used in conjunction with pre-existing front-end to run the accumulated software with 

increased efficiency. In some cases, quantum simulation can demonstrate that certain quantum 

software does not bring competitive advantage to quantum hardware over conventional CPUs. 

This project develops new mathematical and algorithmic concepts for efficient simulation of 

quantum circuits. These concepts are being implemented in software and will help evaluating 

architectures for error-corrected quantum communication and computation. 

  

Project Participants 

Current graduate student at the University of Michigan: Héctor García, Armin Alaghi 

Faculty at the University of Michigan: Prof. John Hayes, Prof. Igor Markov  

Other participants: Dr. Ilia Polian (University of Freiburg), Prof. Shigeru Yamashita (Ritsumeikan 

University)  
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3. Methods and Procedures 

The computational complexity of simulating quantum-mechanical phenomena on 

conventional computers has been one of the first questions studied in quantum information 

processing. The apparent intractability of generic quantum simulation suggested the idea of using 

quantum phenomena to accelerate computation. The speed-ups offered by Shor's quantum 

factoring algorithm and Grover's quantum search algorithm over their corresponding classical 

formulations helped fuel interest and expectations in this area. Most quantum algorithms are 

described in terms of quantum circuits and, just like conventional digital circuits, require 

functional simulation to determine the best design choices given limited resources. Several 

software packages have been developed to simulate generic quantum circuits including Oemer's 

Quantum Computation Language (QCL), and Viamontes' Quantum Information Decision 

Diagrams (QuIDD) QuIDDPro software. These simulators feature a classical programming model 

coupled with a computational interface for quantum circuits. While QCL simulates quantum 

circuits directly using state vectors, QuIDDPro uses a variant of binary decision diagrams to store 

state vectors more compactly in some cases. Since the size of the state vector scales exponentially 

in the number of qubits, such general-purpose simulators can only simulate a relatively small 

number of qubits.  

 

Figure 1. Controlled-NOT, Hadamard and Phase gates. 

 

Gottesman  and Knill [2] showed that, for certain types of non-trivial quantum circuits 

known as stabilizer circuits, efficient simulation on classical computers is possible. Stabilizer 

circuits are exclusively composed of stabilizer gates {Controlled-NOT, Hadamard and Phase 

gates} (Figure 1) followed by one-qubit measurements in the computational basis. Such circuits 

are applied to a computational basis state and produce output states known as stabilizer states. The 
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case of purely unitary stabilizer circuits (without measurement gates) is considered often, e.g., by 

consolidating measurements at the end. Stabilizer circuits can be simulated in poly-time by 

keeping track of the Pauli matrices that stabilize the quantum state. Because of their extensive 

applications in quantum error-correction codes (QECC), stabilizer circuits have been studied 

extensively. A simulation technique dealing directly with stabilizer states will use at least O(n
2
) 

memory. Aaronson and Gottesman [1] proposed an improved simulation technique that uses a 

bit-vector representation to simulate stabilizer circuits. 

Vidal [3] established a necessary condition for a quantum algorithm to defy efficient 

classical simulation. This condition demands that the amount of entanglement generated by the 

algorithm on n qubits grow faster than log(n). In other words, if an algorithm does not generate 

sufficiently high entanglement, it can be simulated efficiently. Since stabilizer states can be 

maximally entangled, entangled states are not sufficient to prevent efficient simulation. By 

extending stabilizer simulation, we seek to simulate new classes of entangled states and circuits 

that generate them. We also seek classes of states that cannot be simulated this way and may 

therefore suggest new types of quantum speed-ups.  

Current techniques for simulating stabilizer circuits offer efficient algorithms but make the 

following assumptions: (i) the initial state of the quantum system must be a computational-basis or 

stabilizer state and (ii) the quantum gates that are applied to the system must be stabilizer gates. 

Relaxing these constraints provides a means for generalizing stabilizer simulation. To relax the 

first constraint, we consider almost-stabilizer circuits, i.e., circuits that contain a small number of 

non-stabilizer gates. Decompositions of non-stabilizer gates into stabilizer gates allow us to design 

flexible simulation techniques that leverage fast simulation of stabilizer gates while not restricting 

the types of gates that can be simulated. To this end, we developed a data structure that uses 

non-stabilizer gate decompositions to simulate almost-stabilizer circuits with runtime polynomial 

in the number of stabilizer gates and exponential in the number of non-stabilizer gates. The second 

constraint is relaxed by admitting a stabilizer decomposition that specifies a non-stabilizer state as 

a linear combination of stabilizer states. It is important to note that given two physical quantum 

states, there is no quantum-mechanical operation to combine them in a linear combination – such 

operations are specific to the simulation context. Generic simulation algorithms typically can 

process arbitrary linear combinations, but algorithms that are limited to certain quantum states 
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usually have trouble with linear combinations. Therefore, we seek compact decompositions of 

non-stabilizer states into stabilizer states and design compatible simulation techniques. 

4. Results and Discussion 

We report the following results on beyond-stabilizer simulation of quantum circuits. 

(i) We define a canonical representation for stabilizer states and design relevant 

algorithms to obtain such a representation from an arbitrary set of independent Pauli 

stabilizers. 

(ii) We prepare tables of all 1-qubit, 2-qubit, 3-qubit stabilizer states, and calculate their 

angles with the ground state. 

(iii) We prove important properties that describe the geometry of stabilizer states including 

nearest neighbors and the relationship between orthogonality and the Pauli generators 

of a stabilizer state. 

(iv) We prove that a particular class of quantum states cannot be approximated with 

arbitrary precision using poly-sized superpositions of stabilizer states. 

(v) We leverage the theoretical insights by Aaronson and Gottesman to design an 

algorithm that uses circuit synthesis to compute the inner product between stabilizer 

states. 

(vi) We propose an algorithm for calculating an upper bound on the inner product between 

stabilizer states, which avoids circuits synthesis and determines whether two stabilizer 

states are equivalent. 

(vii) We propose several algorithms to restructure and compress large superpositions of 

stabilizer states arising during “beyond-stabilizer" simulation. 

(viii) We propose an overall simulation flow for stabilizer-based simulation of generic 

quantum circuits. Our flow emphasizes efficiency and flexibility by leveraging our 

restructuring techniques for superpositions of stabilizer states. 
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(ix) We propose to adapt well-known distributed computing techniques to design a parallel 

implementation of our simulation flow. 

Detailed descriptions of these contributions are given in [1], which we delivered to AFRL. 

This document also (1) reviews the stabilizer formalism necessary to understand the technical 

details of our contributions, and (2) outlines open challenges. In addition to above 

contributions, we have developed software infrastructure for compiling quantum programs 

into quantum circuits, and for designing stand-alone software tools that operate on such 

circuits. In ongoing work, this infrastructure supports high-performance circuit simulators. 

5. Conclusions 

The stabilizer formalism was generalized by Aaronson and Gottesman to include simulation of 

non-stabilizer gates, but this generalization is missing a number of components necessary for a 

practical implementation. These components have been developed in our work, which lays the 

foundation for high-performance simulation of quantum circuits dominated by stabilizer gates. 
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